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We demonstrate that the resonance of metallic split-ring resonators can interact with Bragg phase interfer-
ence effects in a surrounding one-dimensional photonic crystal in such a way that a zero-bandwidth mode
arises within the photonic band gap of the crystal. The band can also be designed to exhibit forward or
backward slow-light propagation. We present a very simple model to explain these phenomena and verify the
results with numerical simulations. The dynamic tuning of the structure has potential for stopping light or
time-reversal applications.
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Great advances in the control of electromagnetic fields by
periodic structures have been made in recent years. On one
side, metamaterials exhibit surprising material properties
such as left-handed propagation,1 typically making use of
split-ring resonators �SRRs� to achieve a negative
permeability.2 On the other side, photonic crystals �PhCs�
make use of interference between incident and reflected
waves to achieve exciting phenomena such as photonic band
gaps. Both structures can be used for slow-light propagation,
which potentially allows the creation of optical buffers and
delay lines, as well as enhanced nonlinear effects.3 In this
Brief Report, we combine both structures in order to achieve
slow-light propagation but we make use of phase interfer-
ence effects between resonators. It is known that interference
between excitation pathways lies behind the slow-light phe-
nomena observed in electromagnetically induced transpar-
ency �EIT� �Ref. 4� in atomic media: the strong dispersion
arising due to quantum interference5 yields a very slow
group velocity around the transparency window. Classical
analogs of EIT have been identified6 and coupled-resonator-
induced transparency �CRIT� has been proposed7 in which
two nearby coupled optical resonators exhibit phase interfer-
ence effects—analogous to EIT—resulting in slow-light
propagation. All those EIT/CRIT interference effects can be
called direct since the interfering entities share the same spa-
tial location and their periodicity does not play a significant
role. In contrast, indirect effects exist on resonators which
are indirectly coupled via the propagating modes between
them. This is the case in systems of periodically spaced op-
tical resonators, named resonant photonic band-gap struc-
tures �RPBGs� �Ref. 8� or indirect coupled resonator optical
waveguides �CROWs�,9 on which the high dispersion around
resonance due to phase interference effects yields a very low
group velocity of light—resembling EIT and CRIT—under
the condition that the resonance frequency of the resonators
matches a Bragg frequency of the optical lattice. Analogous
structures have also been analyzed using interface response
theory.10

A fundamental limit of static slow-light devices is the
delay-bandwidth product11 which limits the available band-
width of the pulses that can be delayed. This limit can be
overcome—with certain limitations12—by using dynamic
structures. The dynamic reduction in the group velocity
down to zero, for light storage overcoming the delay-

bandwidth product limitation, has been performed in atomic
EIT schemes13 as well as proposed in classical EIT
analogs14,15 and also in periodically spaced resonators
�RPBGs/indirect CROWs� implemented with Bragg-spaced
quantum-well resonators.16–18

In this Brief Report, we combine the worlds of PhCs and
subwavelength metamaterials to implement a periodic struc-
ture exhibiting indirect interference effects which can result
in slow light. In particular, we analyze the electromagnetic
field propagation through an infinite SRR-loaded PhC,
whose unit cell is shown in Fig. 1. We only consider one-
dimensional propagation with the polarization as indicated in
Fig. 1. We proceed in the same way as Syms et al.:19 the
SRR is modeled as a simple LC circuit, coupled by a mutual
inductance M to a transmission line element representing the
surrounding medium. We model the PhC by including finite-
length transmission lines that represent the two alternating
PhC layers, through which incident and reflected waves will
propagate and will indirectly couple the SRRs between them;
such model is a simple means to account for Bragg effects.
These effects will lead to very interesting slow-light phe-
nomena as will be shown below. Figure 2�a� shows the pro-
posed model for the unit cell. Its transmission matrix T re-
lates the output fields Ex and Hy with those at the input, and
can be written as

T = TL��2,�2,a2� · TL��1,�1,a1�1 − p��

· SRR�L,C,M� · TL��1,�1,a1p� , �1�

where TL��i ,�i ,ai� represents the transmission matrix of a
transmission line with propagation constant �i=���i�i,
characteristic impedance Zi=��i /�i, and length ai, p
describes the relative position of the SRR in the PhC me-
dium, and SRR�L ,C ,M� represents the transmission matrix
of a SRR.1,19 Equating 2 cos�ka� with the sum of the diago-
nal elements of T yields the dispersion relation of the peri-
odic structure,20 given by

2 cos�ka� = f��� = fPhC��� +
�0M2

L
� �/�0

1 − �0
2/�2�C��� ,

�2�

where k is the Bloch wave vector, a=a1+a2 is the periodicity
of the unit cell, �0=1 /�LC is the resonance frequency of the
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SRRs, and the terms fPhC��� and C��� �Ref. 21� do not de-
pend on the SRR response. This model could be also applied
to other resonant particles such as high-index dielectric disks
or rings, whose circuit model is equivalent to that of the
SRRs.

Figures 2�b�–2�d� show the dispersion relation described
by the model �2� for three different values of �0 with respect
to the lower �1 and upper �2 edges of the PhC band gap.
When �0��1 �Fig. 2�b��, we are in the long-wavelength
regime and the dispersion relation is very similar to that of a
metamaterial SRR medium. When �0��2 �Fig. 2�d��, the
bands are similar to the previous case but folded back into
the first Brillouin zone. The most interesting case occurs
when �1��0��2 �Figs. 2�c�, 3�a�, and 3�b��, where the

SRR resonance occurs within the photonic band gap. This
resembles the setup of SRRs introduced in a band gap cre-
ated by a wire medium,22 a waveguide below cutoff23 or an
etched microstrip ground plane.24 However, in the present
case, we cannot apply an effective-medium interpretation.
We interpret our results by noting that the SRR resonant
mode does not coexist with propagating modes in the PhC,
and thus, neither coupling nor anticrossing take place, result-
ing in a flat dispersion relation with very small group veloc-
ity within the whole Brillouin region. A zoom into the pass-
band, showing the complex Bloch wave vector �k=�− j��, is
shown in Fig. 3�b�. The band has an inflection point at which
the group-velocity dispersion is zero.

To check the model, Figs. 2�b�–2�d� include dispersion-
relation simulations using the eigenmode solver of CST MI-

CROWAVE STUDIO. Figure 3�c� shows a simulated transmis-
sion spectrum. Simulations show an almost exact agreement
with the model. A source of disagreement is the slight red-
shift of the PhC bands when introducing the SRRs in simu-
lations, specially the upper band, which can be interpreted as
if the presence of the SRRs causes the PhC to “see” an ef-
fective medium with index n1ef f instead of n1. This redshift
becomes noticeable if the filling fraction of the SRRs is in-
creased �larger SRR size or reduced transversal periodicity�.
Losses are an important practical issue, Fig. 3�b� shows, us-
ing dots, the complex dispersion relation when a resistance
R�0 in series with L and C is used to account for metal

FIG. 1. �Color online� Unit cell of the SRR-loaded PhC.

FIG. 2. �a� Proposed circuit model for the SRR-loaded PhC unit
cell. �b�–�d� Modeled �solid lines� and simulated �circles� normal-
ized dispersion relations for �b� �0��1, �c� �1��0��2, and �d�
�0��2. The model parameters are p=0.5, �b� �0a /2�c=0.2, �c�
�0a /2�c=0.381, �d� �0a /2�c=0.5463, and �0M2 /L=5 in all
cases. The PhC has a1=70a /75 of air and a2=5a /75 of dielectric
n2=3.45. The simulated SRR structure has dout=22s, din=18s, g
=w=1s, h=9s, and ax=ay =100s, where s is a reference feature size
�b� s=a /75, �c� s=0.5a /75, and �d� s=0.35a /75.

FIG. 3. �Color online� �a� Complex dispersion relation of the
SRR-loaded PhC �thin solid line� and the PhC alone �thick dashed
line� using same parameters as Fig. 2�c�. �b� Zoom to Band II for
the SRR-loaded PhC for lossless SRRs �solid lines� and lossy SRRs
with R /L=1	107 s−1 �dotted lines�, a value chosen arbitrarily
within the expected range. �c� Left: simulated power transmission
spectrum through eight unit cells of a lossless SRR-loaded PhC,
SRRs only, and PhC only. Right: a zoom around �0. Dots in
zoomed view correspond to simulation with realistic copper metal

Cu=5.8	107 �−1 m−1 and a=75 mm.

BRIEF REPORTS PHYSICAL REVIEW B 81, 233101 �2010�

233101-2



absorption in the SRR, and Fig. 3�c� shows, using dots, a
realistic transmission simulation for an arbitrarily chosen
size �a=75 mm resulting in SRR resonance around 1.5
GHz�, using a realistic copper metal for the SRRs. The re-
sults indicate that an experimental demonstration at micro-
wave or terahertz frequencies is at hand.

Much more interesting phenomena related to the interac-
tion of the SRRs with the PhC periodicity can be deduced by
taking a closer look at the model. From Eq. �2�, we see that
a propagating band exists at each frequency � only if −2
� f����2. The first term of f��� is fPhC���, which consti-
tutes the dispersion relation of the PhC without SRRs, and
defines the PhC band gaps whenever �fPhC�����2. The sec-
ond term in f��� is due to the SRRs, and it is an asymptotic
function which diverges at �0. The total function f��� for the
case �1��0��2 is plotted in red �dark gray� in Fig. 4�a�,
where the three propagating bands previously shown in Figs.
2�c� and 3 are clearly observed. The width of the asymptote
�and consequently the bandwidth of Band II� is determined
by the product of the terms �0M2 /L and C���. The sign of
the slope of the two branches of the asymptotic function �and
consequently the sign of the slope of Band II� are determined
directly by the sign of C��0�. Let us call threshold frequency
�th to the first frequency ��0 at which C��� changes sign
�cyan �light gray� in Fig. 4�a��. It follows that the slope and
bandwidth of Band II is determined by the relative position
of �0 with respect to �th. Therefore, Band II can be forward
��0��th�, backward, ��0��th� or completely flat with zero
bandwidth ��0→�th�. Such result resembles EIT �and its
analogs� as expected since it arises from interference effects
between resonators. In this case the form of C��� �Ref. 21�
suggests that the phase interference is indirect �i.e., through
propagating modes�, in analogy to other indirect-CROW
structures.8–10 The effect can be interpreted as destructive
field interference, taking place between the SRRs and the
impinging propagating modes in the medium, that cancels
out the total power flux. Unlike direct interference slow-light
schemes such as EIT, in this case only one resonator �plus
periodicity� is required per unit cell. The phenomenon is il-
lustrated in Fig. 5 in which the dispersion relation of Band II
as well as its group index at the inflection point for varying

values of �0 around �th are shown. Simulations show the
expected slight redshift of �th due to the previously men-
tioned change in n1 into n1ef f �which affects C��� and thus
�th�.

We would like to highlight the difference between directly
coupled resonator structures �standard CROWs �Ref. 25��
and the case presented here �indirect CROW� in which reso-
nators are coupled through mode propagation in the medium,
showing phase interference effects similar to those in EIT,
thus allowing a decrease in group velocity �and consequently
the bandwidth� down to zero. The comparison is analogous
to that made by Khurgin26 between standard CROWs and
EIT media. Notice that magnetoinductive coupling between
SRRs is not included in our model and does not seem to play
a significant role.

An adiabatic dynamic tuning of the slope of Band II �for
example, by modulating the index of the dielectric n2, which
in turn modifies C��� and thus �th� can lead to many sophis-
ticated capabilities: the scheme satisfies the criteria identified
by Yanik and Fan27 for the stopping and storage of light
pulses with no delay-bandwidth limitation14 as well as the
time reversal of electromagnetic pulses.15 Figure 4�b� shows
how the term C��� and thus �th can be tuned by varying the
position of the SRRs within the unit cell �parameter p in the
model�. As seen, this allows us to place �th anywhere within
the photonic band gap. A value of p	0.2 with the param-
eters used in Fig. 2 places �th in the center of the band gap.
If the tunable band exists in the center of a PhC band gap, a
relatively fast adiabatic modulation of the refractive index
�which is a critical practical consideration12� can be per-
formed with negligible scattering into the neighboring
bands.14 In the particular case in which a2=0, we have
C���=sin��1a1� /Z, and the resulting structure is an example
of RPBGs/indirect CROWs as studied in Refs. 8 and 9,
showing an extremely slow group-velocity band when the
resonators are periodically spaced by a multiple of half
wavelength. That phenomenon has been used in Bragg-
spaced quantum-well resonators16,17 to achieve slow-light
applications, and the practical limitations have been thor-
oughly discussed,17 as well as the combination of slow light
with time-reversal capabilities to achieve distortion compen-

FIG. 4. �Color online� �a� Plot of f���, fPhC���, and C��� for the
same parameters used in Fig. 2�c�. �b� Plot of C��� for the same
parameters varying the position p of the SRRs.

FIG. 5. �Color online� �a� Dispersion relation of Band II of the
SRR-loaded PhC model for different values of resonant frequencies
�0 varied around a fixed �th. �b� Modeled �blue, darker gray� and
simulated �red, lighter gray� absolute value of the group index of
Band II at its inflection point as a function of �0.
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sation in a reflection scheme.18 All those considerations also
apply to our proposed structure. Some advantages of our
proposed metamaterial-inspired structure are the freedom in
the design of the SRRs and in the number of achievable unit
cells. In addition, we introduce a PhC �dielectric n2�. This
increases the complexity of the phase interference phenom-
ena between SRRs, allowing an increase in the bandwidth of
the band gap around the slow-light band, and enables the
tuning of �th as previously discussed. Such apparent com-
plexity arises simply from the in-line reflections produced by
the PhC interfaces. In Ref. 28, the interaction between a
cavity resonance and in-line reflections produced at both
sides of the cavity is shown to result in complex interference
phenomena that give rise to sharp and asymmetric Fano line
shapes in the response. Our structure can be regarded as the
simple periodization of such system. Fano line shapes are
therefore characteristic of SRR-loaded PhCs, showing a
strong transmission dip at the resonance frequency always
adjacent to the slow-light band.

In conclusion, we have modeled a structure exhibiting
indirect phase interference effects between SRRs placed in-
side a PhC which result in a slow-light transmission band,

confirmed with numerical simulations, which can ultimately
show zero bandwidth. The result is similar to other slow-
light structures based on direct �EIT schemes� and indirect
�RPBGs/indirect CROWs� interference. The zero bandwidth
occurs when the resonance frequency �0 of the resonators
approaches the so-called threshold frequency �th, determined
by the parameters of the PhC and the position of the resona-
tors within the unit cell. The detuning of �0 with respect to
�th determines whether the band has positive, negative, or
zero slope. An adiabatic tuning of such structure has poten-
tial for nontrivial capabilities such as stopping light with no
delay-bandwidth product limitation and time-reversal
operations.
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